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1. INTRODUCTION 

This report describes the construction of a computer program, POINTRX, to model the 
behavior of the Army Pulse Radiation Facility (APRF) pulse research reactor. Parameters such 
as power, reactivity, and temperature have been calculated as a function of time. The computer 
model was created so that all significant variables can be input into the code; therefore, it is 
adaptable for analysis of a variety of nuclear reactor power excursions. The program may be 
used to conduct a safety analysis of the reactor. 

One mode of operation discussed in this report is the pulse-less tail operation. Other 
facilities with fast burst reactors have conducted small pulse operations where the scramming 
mechanism is delayed after the pulse, but the purpose of a pulse-less tail operation is to provide a 
high power level for a short duration. After a pulse, the reactor power will level or plateau at a 
certain power level, independent of the reactivity insertion. When the reactivity insertion is 
exactly prompt, critical reactor power rises quickly and levels at the same power of the plateau 
with no power spike. This type of operation is called a pulse-less tail operation. 

2. THEORY AND PROGRAM 

The kinetics equations for a point-reactor model are as follows: 

— _A:—^« + E,J,,C,     and   —^ = —^«--^,C, 
dt        i ' dt      i 

where: n is reactor power, p is the reactivity, p, is the delayed neutron fraction of delayed 
neutron precursor /, A,, is the delayed neutron decay constant for precursor /, I is the neutron 
generation time, and Q is the delayed neutron precursor population. Note that, the simi of all six 
Pi is p. Slow transients in a fast reactor requires the solution of systems of equations containing 
very short time constants. Using the integral form of these equations will allow a nixmerical 
solution in which the computer code can control the time step by many orders of magnitude and 
maintain numeric stability. The integrals are evaluated analytically using the assmnption that 
power follows the form: n(t)=noe'^*. Therefore, the only numerical approximation is the 
assumption that A is constant in the above equation throughout the time interval. 

Substitute the integral form for C from the second equation into the first equation, and 
integrate to obtain an equation for power: 

n{t) = «o +1 £ p(t>(t')dt' + E,2,C, £ e-^'<''-'«>Jr' - E A £ nCt^'^^^'-'V/' 



The equation for reactivity has the form: 

dp 
= an(t) 

dt        ^' 

and with the assumption: 

so, p{t) = p^+at n{t')dt' 
•'tn 

n(t)=noe^p(0 = Po+^(e'^'-'"^-l) 

where: a, in units of c/^/kW-sec, is the negative reactivity coefficient, which in this case 
includes the conversion of reactor power into heat generation. Substituting this result and our 
assumption into the power equation, we can integrate to get an equation that can be solved 
numerically: 

where: hist-to. 

A computer code, POINTRX, was written to solve the equation for A for a small time 
increment, h. After A has been determined, reactor power and reactivity are easily calculated. 
These values are then used as the basis for the next time increment. The complete derivation of 
these equations and the formulas used in the code are found in Appendix A. The source code for 
POINTRX, with a sample input file, is attached as Appendix B. 

The reactivity coefficient of -0.3 cents/°C was used in the analysis. This negative 
reactivity coefficient was obtained from the APR Core Design Summary, L. Goldstein (1966). 
The axial and radial coefficients are combined and were calculated with two-dimensional 
transport theory using the S4 approximation with six neutron energy groups. Additionally, in 
order to calculate a in the code, it is necessary to determine the heat capacity of the core in units 
of °C/kW-sec. From previous high-power, steady-state operations at Sand 10kW, where 
cooling was not used, the indicated reactor temperature rise was divided by the integrated power 
for that interval and determined to be 0.04683 °C/kW-sec. The graphs used for determination of 
temperature rise per kW-sec are included in Appendix C. 

Since these data were obtained from in-core thermocouple No. 7, the temperature data 
from the program should be indicative of thermocouple No. 7 data. However, the APRF 
technical specifications point out that the peak to measured ratio is much smaller for steady-state 
operations than pulse operations. Since the 5 and 10 kW operations were relatively short in 
duration, the program is expected to produce data that are only slightly less than measured data. 
Furthermore, it should be pointed out that the program has no method for removing heat; thus, 
heat in the core is always accumulating. This is a reasonable approximation during the pulse as 
an insignificant amount of heat would have dissipated in the short time elapsed; however, when 
investigating temperature rise over long time intervals, the results will be conservative. 



A value of 9.7 ns for the prompt neutron lifetime was reported by J. T. Mihalczo (1969) 
and calculated from measurements using both Rossi-a and pulsed neutron techniques. 
APRF Memorandum for Record 78-68 uses a value of 11.25 ns but does not cite a reference and 
BRL Contract Report No. 82 also uses a value of 11.25 ns and cites the Mihalczo report, even 
though this is incorrect. Furthermore, a value of 11.26 ns was calculated using a simple APRF 
reactor model, by Monte Carlo method, using the MCNP4C code. From calculations using 
POINTRX, it was discovered that the neutron generation time only affects the prompt period and 
pulse width. Changing the generation time had no effect on the temperature rise or integrated 
power, which is of more concern for safety analysis aspects; thus, the neutron generation value 
of 10 ns was used in the calculations. 

The safety block drop time of 200 ms was obtained from safety block drop test records. 
This test uses a digital oscilloscope to record the time that the scram signal is received from the 
scram switch and to signal from the safety block out-switch on the reactor package. The 200 ms 
is the time the safety block takes to be completely out of the core. From previous pulse records 
in automatic mode, the timer stopped an average of 50 ms after the neutron generator fired. This 
is the time when the safety block starts to move since the clock stops when the safety block 
magnet is no longer engaged. Thus, the safety block magnet collapses in 50 ms and the travel 
time for the safety block is 150 ms. For simplicity of this study, the safety block was removed 
linearly, $1 every 10 ms up to 150 ms for a total of $15. The actual removal of the safety block 
would start slow and proceed quicker with time; therefore, this study uses a conservative 
reactivity worth of $15 for the safety block and which is reported as $20 by the APRF Safety 
Analysis Report. 

An analysis is performed of the circumstance where the safety block fails to fall after a 
pulse but the pulse rod does retract. The safety block drop test method was used in analyzing the 
timing of the pulse rod. The time from the scram signal to the movement of the pulse rod was 
measured to be 160 ms. The drop time for the pulse rod to be completely out of the core was 
measured to be 360 ms. For this analysis, the pulse rod is removed in the same manner as the 
safety block, $0.0353 every 30 ms up to 360 ms. Normally, the rise time in a pulse is fast 
enough that the safety channels will trip a scram within hundreds of microseconds of the start of 
the pulse; therefore, time zero is sufficient to start the time delay of the movement of the safety 
block or pulse rod. The drop test and pulse rod data sheets are included as Appendix D. 

3.   RESULTS AND ANALYSIS 

The program calculates a number for A in the code; this number is the inverse of the 
reactor period, commonly called alpha, but, this is not the same alpha in the reactivity equation. 
Figure 1 shows the calculated alpha versus reactivity insertion. The points are measured data 
and the spread is due to instrument error and changes in reactor behavior. By space independent 
neutron kinetic theory, the slope of the linear relation between the reciprocal prompt reactor 
period and the core reactivity above prompt critical is the prompt neutron decay constant, or 
neutron generation time at delayed critical. If we drew a line through the data points (dashed line 
below) the inverse of this slope yields a prompt neutron lifetime of 11.26 ns; thus, the 10 ns 
neutron generation time used is a good approximation. However, while the line of calculated 
data passes very close to zero, the measured data do not seem to pass through the same point. 
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When measuring the reactivity of the pulse rod prior to a pulse, a mini-pulse is performed 
inserting approximately 92 cents above delayed critical. Using the Inhour curve, the dynamic 
reactivity worth of the pulse rod is determined. The dynamic and static worth of the pulse rod 
are different by a few cents, and thus, there must be a small difference between the pulse rod 
dynamic worth at 92 cents and above prompt critical. Therefore, the difference of the 
juxtaposition of the calculated versus measured data, which appears to be between 1 and 2 cents, 
is the difference in the measured versus true worth of the reactivity insertion. 
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Figure 1. Comparison of measured and calculated alpha. 

The program was used to compute the reactor periods for various reactivity insertions. 
Figure 2 shows the relationship between reactor period and reactivity with the prompt neutron 
lifetime of 10 ns and 1 ms, with all other variables remaining the same. Compare this to the 
Inhour curve (fig. 3) from Nuclear Reactor Engineering (Glasstone and Sesonske 1981). The 
prompt neutron lifetime of 1 ms would be a lifetime associated with a thermal reactor. Since the 
model is that of a pomt reactor, relative size is not a factor; thus, the program is also applicable 
to thermal reactor power excursions with the correct input parameters. 
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Figure 2. Prompt neutron lifetime comparison. 
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Figure 3.   Relationship between reactor period and reactivity for various prompt lifetimes. 

Figure 4 shows the shape of a set of pulses calculated by the program on a log/log plot. 
This shape is similar to the reactor gamma dose rate profile data obtained from photo diode 
measurements as presented m Figure 5. Note that, after the pulse, the reactor power will plateau 
until the scram occurs and this plateau region is a significant source of integrated power; thus 
altering the timuig of the scram could change the integrated power by a significant percentage. 
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Figure 4. Pulse profiles. 
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Figure 5. 9.6 x 10^^ fission pulse/$1.088 reactivity insertion. 

A comparison of calculated versus measured pulse parameters for various reactivity 
insertions are presented in Table 1. The data presented here have been calculated out to 
30 seconds. The data indicate that pulse-width-at-half-maximum (PWHM) can be predicted with 
very high accuracy for large pulses, but not for smaller pulses. The differences in the calculated 
prompt periods and the measured prompt periods are probably an artifact of the method used in 
the measurement of the dynamic worth of the pulse rod. As mentioned previously, there is a 
difference of 1 to 2 cents in the true worth of the pulse rod at prompt critical to the dynamic 
worth measured in a mini-pulse. 

TABLE 1. CALCULATED AND MEASURED PULSE PARAMETERS 

Reactivity 
Integrated Power Period, \isec PWHM, usec 

Temperature 
Change, °C 

Measured Calculated Measured Calculated Measured Calculated Measured Calculated 
102.0 7.0 9.3 135.0 74 600 278 25 26 
104.0 14.5 14.7 73.0 44 175 129 48 42 
105.0 19.0 17.5 48.0 29 125 109 66 49 
106.5 28.0 21.5 32.0 22 80 82 93 60 
109.0 54.0 28.0 21.5 16 56 56 175 79 
109.6 62.0 29.5 21.0 15 55 55 210 83 



Table 2 shows a comparison of calculated values to the theoretical values of Wimett 
(1960). For this comparison the calculated values have been converted into the units in Wimett's 
report. Furthermore, Wimett only calculated the fission yield under the spike; tiius the total 
fission yield is not presented. As expected, the program's results are very close to theoretical 
values. 

TABLE 2.  CALCULATED AND THEORETICAL 
PULSE PARAMETERS 

Reactivity 
Peak Power, $/sec Fission Yield, $ PWHM, Msec    | 

Wimett PODSfTRX Wimett POINTRX Wimett POINTRX 

102.0 135 126 0.04 0.041 261.0 278 

104.0 541 500 0.08 0.079 130.0 129 

106.5 1413 1370 0.13 0.129 81.0 82 

109.0 2813 2640 0.18 0.179 56.3 56 

Figures 6 and 7 show a departure of the measured results from calculated resuhs at 
approximately $1.05 insertion. This is expected at some point because the model does not 
account for hydrodynamic effects. For large insertions of reactivity, the period becomes 
increasingly small, as seen in Figure 4. Eventually, the period will be much less than the time 
required for pressure waves generated in the core to reach the surface. Thus, the core will not 
expand as quick as the pulse is occurring; therefore, the assumption of a constant reactivity 
feedback, -0.3cents/°C, will not be accurate. 
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Figure 6. Temperature change versus reactivity insertion. 
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Figure 7. Integrated power versus reactivity insertion. 

Even though the program results will deviate from measurements at $1.05 insertions, this 
does not necessarily preclude the use of the program for safety analysis. Since the program 
produces linear relations for temperature and integrated power, the input parameters can be 
adjusted such that a certain reactivity insertion will calculate equivalent integrated power and 
temperature results for a $1.09 insertion. Since the reactivity feedback changes during large 
pulses, this leads to a change in heat capacity. Using the measured data from Table 1, an 
effective heat capacity may be obtained by dividing temperature change by integrated power and 
averaging the results. This gives a heat capacity of 0.05583 °C/kW-sec. This method of derivmg 
the heat capacity may be more accurate than the previously stated method using high power 
steady-state operations since heat will have less time to migrate during a pulse. Table 3 lists 
different measured reactivity insertions correlated to a computed reactivity insertion using the 
new value for heat capacity. Using this value, and a reactivity insertion of $1.23, which would 
be a very large pulse m reality, the program will calculate a temperature change and integrated 
power equivalent to a lO'^ fission pulse. 

TABLE 3. REACTIVITY INSERTION COMPARISON 

Reactivity Insertion AT Calculated AT at 120 Seconds    1 
Measured POINTRX Measured Normal No Scram PR Scram 

102.0 102 25 26 664 164 
104.0 105 48 49 684 217 
106.5 111 93 93 725 301 
109.0 123 175 180 806 435 



Figures 8 and 9 compare the power and temperature excursions of a 10*^ fission pulse, 
with a normal scram at 10 kW, to pulses with total and partial scram failures. In the case where 
no scram occurs there is no significant drop in power, but instead a more gradual decline in 
power due to the negative reactivity provided by temperature (fig. 10). As seen in Table 3, this 
is not enough to prevent exceeding the safety limit of 650 °C. Using the peak to measured 
multiplication factor of 1.43, from the APRF Technical Specifications to determine peak core 
temperature, the safety limit will be reached in 3.2 seconds and core damage will occur at 
60 seconds without any operator intervention. 

However, if the only scramming mechanism is the pulse rod, the temperature safety limit 
will be exceeded in 90 seconds, but no core damage will occur even without operator 
intervention. This would give the reactor operator sufficient time to take action, such as 
withdrawing rods to remove more reactivity, thus reducing peak temperatures. Furthermore, 
these results are considered to be conservative suice the heat capacity used to compute alpha in 
the program is a constant. The heat capacity for U-10 Mo increases as temperature increases; 
thus, more heat is required to raise the temperature as temperature rises. For small temperature 
changes this difference is negligible and has been neglected; however, it is more significant with 
large temperature changes. 
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Figure 8. 10*^ fission pulse power profile. 
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4.   PULSE-LESS TAIL OPERATIONS 

It may be possible to take advantage of the plateau power that occurs after a pulse to 
operate the reactor at very high power levels for short duration. Figure 11 represents the power 
profiles of reactivity insertions near prompt critical with the scram delayed until 1 second after 
initiation of the pulse. When the reactivity insertion is exactly prompt critical, there is no power 
spike, but the power plateau is approximately the same as higher reactivity insertions. Results of 
the calculated temperatures after 30 seconds for these reactivity insertions with delayed scrams at 
1, 5, and 10 seconds are listed in Table 4. The temperatures are initially 25 °C, which is the 
normal for reactor operations prior to initiating a pulse. Notice that for a normal scram, set point 
is 10 kW, the pulse below prompt critical has no temperature change. This is comparable to a 
mini-pulse operation where no temperature change is observable. 
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Figure 11. Pulse profile-scram at 1 second. 

TABLE 4. CALCULATED TEMPERATURES WITH VARIOUS SCRAMS 

Reactivity Plateau Power 
Temperature at 30 Seconds                     j 

lOkW-Scram Scram-1 sec Scram-5 sec Scram-10 sec 
99 2.3 MW 25 106 319 432 

100 3MW 30 138 336 444 
101 4MW 43 152 347 454 
102 6MW 51 163 357 462 

11 



By the APRF technical specifications, it is desirable to maintain core temperatures below 
350 "C during steady-state operations, although exceptions can be made by the Test Planning 
Committee to allow operations up to 650 °C. However, any pulse-less tail operation is much 
faster than the response time of the temperature indication system; therefore, it is not certain 
whether it would be considered a pulse or a steady-state operation. 

From Table 4, the peak fuel temperature change for any of the above pulses where the 
scram occurs at 1 second would not reach 350 °C. Note again that the temperatures calculated 
would be indicated temperatures; thus, using the conservative 1.43 peak to measured ratio, the 
safety limit of 650 "C would not be exceeded if the reactivity insertion is at or below 101 cents 
and the scram occurred at 10 seconds or less. Furthermore, a pulse-less tail operation is shnilar 
to a very wide pulse, in ttiat the thermal stresses generated would be much less than the thermal 
stress generated in a high yield pulse, which the 650 "C safety limit has been established to 
prevent. 

Table 5 provides calculated temperatures for the same set of insertions widi the scram 
occurring at 5 and 10 seconds; however, for these insertions the safety block is assumed to fail to 
drop and the pulse rod is the only scramming mechanism. By this table, no permanent damage 
will occur if the pulse rod drops, and if the pulse rod drops at 5 seconds, the safety limit of 
650 °C will not be exceeded. 

TABLE 5. CALCULTED TEMPERATURES 
PULSE ROD ONLY SCRAM 

1               Temperature at 30 Seconds               | 
Reactivity 5 sec 10 sec 

99 414 491 
100 430 503 
101 441 512 
102 451 521 

Figure 12 shows the power level for a 100-cent insertion plotted on a linear scale with a 
scram occurring at 10 seconds. Figure 13 shows the temperature excursion for the same insertion 
with a normal scram and a scram failure where the safety block fails to come out, but the pulse 
rod does come out. Before the scram occurs, the only change to reactivity is the negative 
temperature feedback. When a normal scram occurs at 10 seconds power drops dramatically and 
temperature ceases to increase; however, while the small worth of the pulse rod still provides a 
drop in power, the temperature will continue to rise slowly. 

12 
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Figure 12. 100 cent insertion - scram at 10 seconds. 
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Figure 13. 100 cent insertion - scram at 10 seconds. 

5.   CONCLUSION 

A computer code was written using a point kinetics reactor model to investigate the 
behavior of various parameters of the APRF pulse research reactor during pulse operations. The 
calculations have been compared to previous theoretical and APRF empirical data to validate the 
code. Agreement is good; however, large pulses need to be adjusted because the model does not 
account for hydrodynamic effects. Results have shown that if the reactor failed to scram after a 
pulse of 10^^ fissions, core damage would occur in 60 seconds unless the reactor operator was 
able to take action. However, if the pulse rod came out of the core, even though the safety block 
failed to drop, no permanent damage would occur and the operator would have 90 seconds to 
take action to prevent exceeding a safety limit. 

13 



The pulse-less tail operation was investigated for delayed scrams at 1, 5, and 10 seconds. 
This revealed that for reactivity insertions exactly at prompt critical, no pulse occurs; however, 
power rises to approximately 3 MW and steadily decreases until the scram occurs. The 
temperature rise for these operations with normal scrams occurring one second after initiation are 
well below normal operating temperatures. Furthermore, a safety limit would not be exceeded 
for an operation up to a 101-cent insertion with a scram delayed up to 10 seconds. It is not 
obvious at this time whether this operation should be classified as a steady-state or pulse 
operation. 
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APPENDIX A   DERIVATION OF FORMULAS IN PROGRAM 

The point reactor model kinetics equations are: 

dl=Pzln + i:^X,q  (1)  and    ^ = A„_A,.c, (2) 
dt i <  <   .   V y dt        i 

Where the following variables are defined: 
N neutron population 
Pi delayed neutron fraction 
Ai delayed neutron decay constant 
p reactivity 
/ prompt neutron lifetime 
Q delayed neutron precursor population 

The precursor equation (2) may be integrated as: 

-Xi(t-t') 

C,(0 = e - .-A' C. +Aj^'„(/)eV^f'     or    Ci(t) = Q^e-''<'-'°>+^{^n(t')e'''^"^dt'      (3) 

To show how equation (3) is derived, assume Ci(t) = f(t)e '^'^' '''\ where f(t) is an arbitrary 
function; thus, 

dt       dt -/wv     , 

Substituting these equations into equation (2) 

^e-^'^'-'o^ +f(t)-X=e-''('-'»^ =-^n-Xif(t)e-''^"»^ 
dt ' i 

d£ g-Xi(t-to) -PLQ 

dt H 

— = ^n(t)e''('-'°> 
dt     H 

Megrate to get 

f (t) = J' ^n(t')e^'^''-'''Mt'+const 
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Substitute f(t) into the assumption to get equation (3). 

Ci(t) = Ci^e-^('-'o)+^fn(t')e^(»H)dt' 

Substitute equation (3) into equation (1) to get: 

at        K. ° ^   Jto 

Integrate to get 

«(0 = n„ + £.^(^„(/')^r' + 2,A,C, j;y^'(''-'«Vr' +^iML £dt'j''e-^'^''-'">n(t'') 

Evaluate double integral using integration by parts 

|udv = uv-Jvdu 

u = r nCt'Oe'^'^'dt' du = nCt^'^'^'dt' 
In 

dv = e~^' dt ^ii' j^i 

^^^  r'n(tV''dt''= r'n(tV''dt" 

A- 

-—e"^'*' 
A 

r'  1 -'lit'   „/4.'\„^lt Jif - f -—e'^'*' nCtOe^^'dt' 
du 

-1   f«'     ...   .3.r,'_,.^        1    ft 
f n(tV'(''-''>+-!-fn(t')dt' 

f^t'   t'-^t 

1 ft 
= -f rnCtOe-^^^Odt' + ffnCtOdt' 

A-i ""'o Aj ■'to 

Substitute this back into power equation. 

n{t) = n,^\]^^^n{t')dt' + i:,X,q{'e-'^''--'''^dt'+^ 
"» I ""o ^      Jto ^      Jto 
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Since EjPi = p 

n(t) = «o + i r Pimm' + E,2,C, i; e-'(''-'«>Jr'-E, A J^ „(t')e-^('-'Vr' 
(4) 

The equation for reactivity is — = ocn(t); thus,       p(t) = pQ+a\ n(t')dt' (5). 
at ""« 

Assume that n(t) = ngC^' (6), and each time increment will start with to = 0.   Therefore, the 
time mcrement At = t-tf)=t = h.   Substituting the power equation (6) into reactivity equation 
(5) yields the reactivity equation used in the code. 

Pit) = p,+a [n,e'''df = p,+ ^(.^ -1) 
(7) 

Substitute equation (6) into the precursor equation (3) and evaluate to derive the precursor 
equation used in the code. 

Ci (t) = C; e-''('-'°) + ^ r   noe^''e-''('-''Mt' 

= C. e-''''+-^r e-'''e<^"'''''dt' 
'o P      Jo 

C,(0 = C, e-''''+M^—-(e^^^''^''-l) 
(8) 

The power equation (4) can be evaluated by substituting in the reactivity equation (7) and the 
assumption equation (6). 

«(0 = «o+;^f 
ccn^ f^At' A + ^(^" -1) n^e'^'dt' + S,AC, f c'^''dt' _ E A £ n.^'^V'^^-'Mt' 

= «o + £    Jo IJ^   Jo //<   Jo 

A- 

h 

+ 2;,.;i..C,l--«-'■''1 -E..^e-^''£ e^^^^'^''^/' 
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f „2Ah Ah      ■,\ 

2A 
-S,C, ie-''' -1)- E, A"°""'  (e(-^-^.)^ _i) 

£(A + Z,) 

For the computer code to evaluate equation (9) must be solved for A. Thus, set (9) equal to (6). 

0 = -n,e-^n,^^[e- -l]+^[i(e-^ +l)-e-)-2:.C,(.-'* -l)-Z, PiHoe 
£{A + Xi) 

(e(A-^,)h_l) 

The code uses a root finding routine to solve for A; however, a first approximation must be 
found. As an approximation let 

,Ah 
2 1.2 

e"^ «\ + Ah + 
A'h 

U ^ '    iA^ 

2( 

V2./,.i^.,l-,-..-i!^^^ 

-.,C,.(.--,)-.,|M__0.(A.X,)h-.) 

n.Ah =   " "   + —2— 

Thus, ^=^+^?^-z.^u--i)_2. Af:!: 
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APPENDIX B.  POINTRX PROGRAM 

The program, POINTRX, is run in a DOS window. The name of the executable file is 
followed by the name of the input file, followed by the name of the output file. If the input file is 
not foimd in the same directory as the one being executed from and the directory is not indicated 
on the command line; then the program will abort with a message stating the input file was not 
found. If the output file is not identified on the command line, the program creates or appends a 
file called output. An example execution line will look like: 

C:\pointrx aprf-in.txt aprf-out.txt 

The input file does not need to be a wordpad, notepad, or any other word processor file, 
but it must be a text file. Any comments after a double slash (//) are ignored as comments, tiius 
the sample input file, included in this appendix as page 2, has many comments to show the 
location of all the inputs. The output file will identify at the beginning of the file all the inputs 
used in the program, without the comments. After the program has read all the constants, the 
initial time will be the start time for the output. There must be at least two lines for the program 
to run so that the program has a start time and a stop time. 

The code assumes that the power in each time increment follows the form: iioC . The 
code determines the free parameter A (the inverse period) to satisfy the integral equations at the 
beginning and end of each time increment. To check whether the exponential form is correct 
throughout the time interval h, the code makes two comparisons. First, the code compares the 
power at the end of the interval using tiie previous value for A, with a new value for A, selecting 
the best value. Second, the code computes new parameter A by solving the integral equation over 
a time period h/2. If the two values do not match, the time interval is halved and the process 
repeated. For each time increment, an attempt is made to stretch the time period h. 

The program uses the first time increment as the initial guess for the time variable, h. Thus, 
if a large time increment is used, the "bad guess" message will appear on the screen until the 
program fmds an appropriate value. The program will run for any number of time intervals or 
reactivity insertions or withdrawals. The time increment is also the data output interval the 
program uses to write data to the output file; thus increase the time increment for less data and 
shorten it for more data. A sample beginning of an output file is included in this appendix as 
page 3. 
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//******DATA INPUT FILE FOR POINTRX PROGRAM — APRF STD CORE VALUES****** 
// 
//  fast fisson values from G.R. Keepin(cl965) using B of 0.0068 
//   beta        lambda 

0.0002584   0.0127 
0.0014484   0.0317 
0.0012784   0.115 
0.0027676  0.311 
0.0008704   1.40 
0.0001768  3.87 

// 
//     thermal coefficients neutron inital 
//degress C/kw-sec     cents/degree C   lifetime(sec)     core tempC) 

0.04683 -0.3 l.Oe-8 25 
// 
// 
//  time increment is the data output interval 
// 
//  initial time  time increment  initial reactivity initial power 
//      sec sec $ kw 

°-0 l.e-5 1.05 0.001 // pulse rod insert 
l-e-3 l.e-4 0.00 
2.e-3        l.e-3 0.00 
50-0e-3 l.Oe-3        -0.05 // SB begins to move 
52.5e-3       l.Oe-3        -0.10 // scram 
55.0e-3       l.Oe-3        -0.10 // scram 
57.5e-3       l.Oe-3        -0.25 // scram 
60.e-3        l.Oe-3        -0.5 // scram 
70.e-3        l.Oe-3        -1.0 // scram 
SO.e-3        l.Oe-3        -1.0 // scram 
90.e-3        l.Oe-3        -1.0 // scram 

scram 
scram 
scram 
scram 
scram 
scram 
scram 
scram 
scram 

.. scram 
210.e-3       l.Oe-3        -1.0 // SB completely out 

100.e-3 l.Oe-3 -1.0 // 
120.e-3 l.Oe-3 -1.0 // 
130.e-3 l.Oe-3 -1.0 // 
140.e-3 l.Oe-3 -1.0 // 
150.e-3 l.Oe-3 -1.0 // 
160.e-3 l.Oe-3 -1.0 // 
170.e-3 l.Oe-3 -1.0 // 
180.e-3 l.Oe-3 -1.0 // 
190.e-3 l.Oe-3 -1.0 // 
200.e-3 l.Oe-3 -1.0 // 

0.5 l.Oe-2 0.00 
1.00 0.1 0.00 
10.0 1.0 0.00 
30.0 
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INPUT FILE DATA: 
0.0002584 0 0127 
0.0014484 0 0317 
0.0012784 0 115 
0.0027676 0 311 
0.0008704 1 40 
0.0001768 3 87 
0.04683 -0.3 l.Oe-8 25 

0.0 l.e-5 1.05 0.001 
l.e-3 l.e-3 0.00 
50.0e-3 l.Oe-3 -0.05 
52.5e-3 l.Oe-3 -0.10 
55.0e-3 l.Oe-3 -0.10 
57.5e-3 l.Oe-3 -0.25 
60.e-3 l.Oe-3 -0.5 
70.e-3 l.Oe-3 -1.0 
80.e-3 l.Oe-3 -1.0 
90.e-3 l.Oe-3 -1.0 
100.e-3 l.Oe-3 -1.0 
120.e-3 l.Oe-3 -1.0 
130.e-3 l.Oe-3 -1.0 
140.e-3 l.Oe-3 -1.0 
150.e-3 l.Oe-3 -1.0 
160.e-3 l.Oe-3 -1.0 
170.e-3 l.Oe-3 -1.0 
180.6-3 l.Oe-3 -1.0 
190.e-3 l.Oe-3 -1.0 
200.e-3 l.Oe-3 -1.0 
210.e-3 l.Oe-3 -1.0 
0.5 l.Oe-2 0.00 

■  1.00 0.1 0.00 
10.0 1.0 0.00 
30 

BEGIN OUTPUT DATA: 
time      power (kW) temp         rho       1/period      delta-t 

O.OOOOOOe+000 1.OOOOOOe-003 2.500000e+001 7 .140000e-003 
l.OOOOOOe-005 9.503938e-003 2.500000e+001 7.140000e-003 1.054957e+005 2.242261e-008 
2.000000e-005 2.145182e-002 2.500000e+001 7.140000e-003 6.572550e+004 3.672489e-008 
3.000000e-005 3.823869e-002 2.500000e+001 7.140000e-003 5.178624e+004 4.905765e-008 
4.000000e-005 6.182468e-002 2.500000e+001 7.140000e-003 4.5011B9e+004 5.867678e-008 
5.000000e-005 9.496391e-002 2.500000e+001 7 .140000e-003 4.115234e+004 9.312402e-008 
6.0000006-005 1.4152616-001 2.500000e+001 7.140000e-003 3.881214e+004 1. 282834e-007 
7.0000006-005 2.0694846-001 2.5000006+001 7.140000e-003 3.729766e+004 1.203567e-007 
8.000000e-005 2.988707e-001 2.500000e+001 7.140000e-003 3.6279506+004 1. 930491e-007 
9.0000006-005 4.2802726-001 2.5000006+001 7.140000e-003 3.559906e+004 1.649125e-007 
l.OOOOOOe-004 6.095005e-001 2.500000e+001 7.140000e-003 3.511921e+004 2.366062e-007 
l.lOOOOOe-004 8.644826e-001 2.500000e+001 7.140000e-003 3.4797186+004 2.246515e-007 
1.2000006-004 1.222749e+000 2.500000e+001 7.1400006-003 3.456455e+004 4.432042e-007 
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// POINTRX - computes reactor power (nO) using weighted residual method 

#include "stdafe.h" 

#defme LINELENGTH 121 
line 
#defme MAXTRIES 25 
subdivide h 

//global variables 
// 
static double smallNumber=1.0E-10; 
double nO, rho, nRho, c[6], temp; 
double alpha2, alpha!, ngentime, timeincrement, time; 
double power, nTime, nTime_increment, milestone; 
double ttime, beta[6], lambda[6], beta_sum; 

II compute (exp(a*h>l)/a safely, with no divide by zero. 
// fl->A 
double aexp(double fl, double f2) 
{ 
if (fabs(fl) > smallNumber) return ((exp(fl*f2)-1.0)/fl); 
else return (f2 + 0.5*fl*f2*f2); 

}; 

// Put a line into output file. 
// 
void putLine(FILE *ip, char *line) 
{ 
int index, out; 

for (index=0; index<LINELENGTH; index++) 
{ 

out = fputc(line[index], fp); 
if (line[index] = '\n') return; 

}; 
return; 

}; 

// Max length of input/output 

// Max number of times to 

// Get a line from input file. 
// Ignore lines after double-slash "//". 
// Ignore blank lines 
// 
int getLine(FILE *fp, char *line) 
{ 
int index, ii; 
char letter; 

for(;;) 
{ 

// Read until line without // 
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memset(lme,'', LINELENGTH); // Clear line 

for(index=0; index<LINELENGTH; index-H-) 

{ 
letter = fgetc(^); 
if (letter == EOF) 
{ 

letter = '\n'; 
if (index = 0) 
{ 

printfC'End of file found\n"); 
return 0; 

}; 
}; 
line[index] = letter; 
if (letter =='\n') 
{ 

reading line 

line[ii] = '\n'; 
break; 

}; 
}; 
if(line[0]=='V) break; 
else return 1; 

}; 

}; 

}; 
if (index >= LINELENGTH) 
{ 

printf("Input line too long."); 
line[LINELENGTH-l] = 'W; 
return 1; 

}; 

}; 

// Treat end-of-file as end-of-line 

// Finished 

for (ii=0; ii<index-l; ii++) 
{ 

if ( (line[ii]==V') && (line[ii+l]=='/')) // Check for // 
{ 

// Check for empty line. 
// else done. 

// If an input line was too long 

// inform 

// and terminate 

int getData(FILE *^) 
{ 
char line[LINELENGTH]; 

printf("Retrievmg data from file.\n"); 
if (getLine(Q), line) == 0) return 0; // Get data from input file 
if (sscanf(line, "%Lg%Lg%Lg%Lg", &nTime, &nTime_increment, &nRho, &power) == 0) return 0; // read data 
nRho = beta_sum*nRho; // Convert reactivity 
if (power<l .e-6) power=l.Oe-6; // initial power > 0 

return 1; 
} 

int initialization(FILE *1^1, FILE *Q32) 
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{ 
inti; 
char line[LINELENGTH]; 

printf("Initializing.\n"); 
sprmtf(lme, "%s\n", "INPUT FILE DATA:"); 
putLine(fp2, line); 
while(getLine(fpl, line) !=0) // Write entire input file to output file 

putLine(^2, line); 
} 
fprintf(ip2, "\nBEGIN OUTPUT DATA:\n"); 
fseek(fipl ,0L, SEEK_SET); // Reset input file pointer to beginning 

of file 
for(i=0; i<6; 1++) 
{ 

if (getLine(^ 1, line) == 0) return 0; // Get data from input file 
if (sscanf(line, "%Lg%Lg", &beta[i], &lambda[i]) == 0) return 0; // read data 

if (getLine(Q31, line) = 0) return 0; // Get data fi-om input file 
if (sscanf(line, "%Lg%Lg%Lg%Lg", &alphal, &alpha2, &ngentime, &temp) = 0) return 0; // read data 
for(beta_sum=0, i=0; i<6;i-H-) betasum += beta[i]; 
alpha2 = alpha2*beta_sum*alphal/100; //converttemp coeff cents/degree C to reactivity/kw-sec 
return 1; 

} 

//**************»*#+***#^,»*,:„+^,*:»^^^^,»^^^^^^^^,^,^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

double function(double Aest, double h) 
{ 
int i; 
double sum=0.0; 

sum = nO-nO*exp(Aest*h); 
sum = sum + nO*rho*aexp(Aest,h)/ngentime; 

if(fabs(Aest)<0.00001) 
sum = sum + (alpha2*n0*n0*h*h)/(ngentime*2); 

else 

sum = sum + (alpha2*nO*nO/(ngentime*Aest*Aest))*(0.5*(exp(2*Aest*h)+l>exp(Aest*h)); 

for(i=0;i<6;i++) 
{ 

sum = sum - c[i]*(exp(-lambda[i]*h)-l.); 
sum = sum - (beta[i] * nO * exp(-lambda[i]*h) * aexp(Aest+lambda[i],h))/ngentime; 

retum(sum); 
} 

//*********ii*1r*t**:^t^ciHfif ***************************** 

II Finds a value x which gives func(x, h)=0. 
// Input a first approximation x. 
double root_find(const double x, const double h) 
{ 
double x_low,x_hi; //These bracket x 
double fjow, f_hi, f_x; // func(x_low), func(x_hi), func(x) 
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double xlowold, xhiold, flowold, fhiold; 
double x_try, ftry, xtryl, f_tryl, offset; 
double convergeS=1.0E-20; 
double convergeX=1.0E-5; 
double eps=1.0e-20; 
double perturb=0.2; 

initial search 
double limitl=1000.0,limit2=l .OE+10; 
double P, Q, R; 
int iter, max_iters=100; 

// Done if abs(func(x))<converge 
// Done if xlow and xhi match 

// Small nxmiber 
// Amount to perturb x in 

// Limits range of search 

// Limit iterative improvement. 

f_x = function(x, h); 
if (fabs(f_x)<eps) return x; 

// Need to bracket x. Want to end with func(x_low)*func(x_hi)<0. 
// This sign change means that desired x is between x_low and xhi. 
// Vary x and look for a crossing of axis. 
// Expand region around x until zero crossing found. 
offset = fabs(x)+0.1; 
xlowold = x; 
xhiold =x; 
flowold = f_x; 
fhiold =f_x; 
do 
{ 

x_low = x_low_old - perturb*offset; 
f_low = function(x_low, h); 
if(fjow*f_x<0) 
{ 

x_hi = x_low_old; 
f_hi = flowold; 

} 
else 

// scale factor to search around x 
// Lower limit of last search. 
// Upper limit of last search 

// Vary low. 

zero 
{ 

xlowold = 
f low old = 

■- x_low; 
f_low; 

// Foimd zero crossing 

// Did not cross 

// March down if needed 

xhi = x_hi_old + perturb*offset; 
fhi = function(x_hi, h); 
if(f_hi*f_x<0) 
{ 

zero crossing on high side 
x_low = x_hi_old; 
f_low = f_hi_old; 

} 
else 
{ 

xhiold = xhi; 

// vary high 

// Found 

}; 
f_hi_old = f_hi; 

}; 
perturb = 1.2*perturb; 
if (perturb>limitl) printf("%s"," Poor guess.\n"); 
if (perturb>limit2) 
{ 

// No crossing. Extend boundary. 

// Increase range for next search 
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printf("%s"," Search for root stopped.\n"); 
return x: 

}; 
} while (f_low*f_hi > 0); // Check to see if root bounded 

// Root is bounded by x_low and xhi. 
// Try to improve root by selecting a new value x in the middle and fitting a quadratic. 
// Use end best points to develop new xlow and xhi. 
for (iter=0; iter<max_iters; iter-H-) 
{ 

xtry = 0.5*(x_low+x_hi); 
f_try = function(x_try, h); 
if (fabs(f_try)<convergeS) return x_try; 
if ( fabs(f_low-f_try)<eps || fabs(f_hi-f_try)<eps | 

fabs(f_low-fJh[i)<eps) 
{ 

existing value; 

} 
else 
{ 

quadratic guess 

// Point in the middle 
// Evaluate function there. 

// Got lucky. Done. 

// divide by 0? 
//Use 

}; 

x_tryl = xtry; 
f_tryl = f_try; 

P = f_low-f_try; 
Q = f_low-f_hi; 
R = f_try-f_hi; 
x_tryl = f_try*f_hi*xJow/(P*Q); 
x_tryl -= ((f_low*f_hi*x_try)/(P*R)); 
x_tryl += ((f_low*f_try*x_hi)/(Q*R)); 
f_tryl = function(x_tryl, h); 

//Find 

if(f _try*f low < 0) 
{ 

X hi = x_try; 
f hi = l Ltry; 

} 
else 
{ 

X low = = x_try; 
flow = = f_try; 

// At least divide region by 2 

}; 
if ( (x_tryl>x_Iow) && (x_tryl<x_hi)) 
{ 

within boundary 
if (fabs(f_tryl)<convergeS) return xtryl; // Done. 
if(f_tryl*f_low<0) 
{ 

x_hi = x_tryl; 
f_hi = f_tryl; 

} 
else 
{ 

// x_tryl 

}; 

x_low = x_tryl; 
f_low = f_tryl; 
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if (fabs(f_hi-f_low)<convergeS) return (0.5*(x_hi+x_low));    // Return if both are close to 0 
if (fabs(x_hi-xJow)<convergeX) return (0.5*(x_hi+x_low)); // Return if xhi and xlow match 

}; 
printf("%s"," Exceeded iteration limit in root_find.\n"); 
return (0.5*(x_hi+x_low)); 

}; 

// Can use either calculated vaule or old value. 
// 
double calculate_A(double h) 

{ 
inti; 
static double Aold = 0.0; 
double Aguess=0.0; 

for(i=0; i<6; i++) 
{ 

Aguess=Aguess-(c[i]*aexp(h,-lambda[i])/nO)-(beta[i]*exp(-lambda[i]*h)/ngentime); 

} 
Aguess = Aguess + rho/ngentmie+alpha2*n0*h/(2*ngentime); 
if (fabs(function(Aold, h)) < fabs(function(Aguess, h))) Aguess = Aold; 
Aold = root_find(Aguess, h); 
return Aold; 

}; 

/l:t:*********************** ******************************************************* 

II Compute next time at which to print data 
// 
void nextMilestoneO 
{ 
if ((milestone + time_increment)> nTime) 

milestone = nTime; 
else milestone = (milestone + time_increment); 

}; . 

Ili^itififit:*********************************************************************************** 

int main(int argc, char *in[]) 
{ 

FILE *in_file; 
FILE *out_file; 
double deltaTime, h, Afactor; 
double Atry, Ahalf; 

int ii, i; 
double tolerance = l.OE-6; 
char line[LINELENGTH]; 

m_file = fopen(in[l], "r"); // Open input file 
if(in_file = NULL) 
{ 

printf("Cannot open %s for input.\n", in[l]); 
return 1; 

}; 
if(in[2]==NULL) out_file = fopen("output.txt", "a+"); 
else out_file = fopen(in[2], "a+"); //append output file, create if needed 
if(out_file —NULL) 
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printfC'Cannot open file for output.\n"); 
return 1; 

}; 
if (initialization(in_file, out_file)==0) return 1; // initialize constants 

sprintf(line," %s\n","   time      power (kW)    temp 
putLine(out_file, line); 

rho       1/period      delta-t"); 
// milestone => print; 

// get starting data if (getData(in_file)=0) return 1; 
nO = power; 
time = nTime; 
timeincrement = nTime_increment; 
rho = nRho; 
for(ii=0; ii<6; ii-H-) c[ii]=beta[ii]*nO/(lambda[ii]*ngentime); // initialize precursors 
if (getData(iii_file)=0) return 1; 
sprintf(line," %e %e %e %e \n", time, nO, temp, rho); 
putLine(out_file, line); 

h = timeincrement; 
nextMilestoneO; 

// get next time marker 

// Initial guess for h 

// Use this as end of problem marker 

// Keep subdividing h until A stabilizes 

while(time_increment>0.0) 
{ 

Atry = calculate_A(h); 
for(ii=0; iKMAXTRIES; ii++) 
{ 

Ahalf = calculate_A(h/2.); 
if ((fabs(Atry-Ahalf)*h)<tolerance) break; 
Atry = Ahalf; 
h = h/2.0; 

}; 
if (ii=MAXTRIES) printf("At time = %LE A did not converge",time); 
if ((time+h+smallNumber)>= milestone) deltaTime = milestone-time; 

else deltaTime = h; 
time = time + deltaTime; 
nO = nO*exp(Atry*deltaTime); 
if(nO>0.5) 

adjustments below SOOwatts 
{ 

Afactor = aexp(Atry,deltaTime); 
temp = temp + alphal *nO*Afactor; 
rho = rho + alpha2*n0* Afactor; 

} 
for (i=0; i<6; i++) 
{ 

c[i] = c[i]*exp(-lambda[i]*deltaTime) + 

((beta[i]*nO*exp(-lambda[i]*deltaTime)/ngentime)*aexp(Atry+lambda[i],deltaTime)) 
It 

if (time >=(milestone-smallNumber)) 
{ 

sprintf(line," %e %e %e %e %e %e\n", tune, nO, temp, rho, Atry, h); 
putLine(out_file, line); // milestone => print; 
nextMilestoneO; 
if (time >= (nTime-smallNumber)) 
{ 

// No temperature 
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timeincrement = nTimeincrement; 
rho = rho + nRho; 
if ( (nRho > beta_sum/1000.) && (h>1.0e-6) ) h = l.Oe-6; 
if (getData(in_file)=0) return 1; // get next time marker 
nextMilestoneO; 

} 
}; 
h = h*5.0 + 1 .Oe-9; // Try to stretch h 

}; 

fclose(in_file); // Close mpuf output files 
fclose(out_file); 

printf("Finished.\n"); 
return 0; 

} 
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APPENDIX C.   HEAT CAPACITY DERIVATION 

Figure 1 is a plot of the temperature data collected from thermocouple No. 7 during an 
8-kW steady-state operation at 20 feet. No cooling was used during the run so that the 
temperature rise shoidd be similar to that of a pulse operation. However, the graph is not exactly 
linear; as expected, the higher the temperature tfie more heat will be radiated away from the core. 
This is more evident in Figure 2, which is a plot of the heat capacity obtained from the data from 
the same operation. Low power steady-state operations will eventually reach an equilibrium 
temperature where the heat generated is equal to the heat being radiated away. Time zero in the 
graph is the point where the reactor is at 1/e for 8 kW, and reactor power is at 8 kW at 
120 seconds. 

To determine the heat capacity of the core, find the slope of the line by dividing a change 
in temperature by the change in time: 

AT = 219 - 99  =120 = 0.3333 °C 
At      540-180     360 sec 

Next, divide this number by the operating power level to get 0.04167 °C/kW-sec. This is 
within 5 percent of the value derived from previous operating data on the following sheets. The 
shutdown time for this operation was 600 seconds. Beyond this pomt the core is cooling down, 
with no power input, by radiating heat. The slope of this portion of the curve is -0.14 °C/sec. If 
this is added to the heat capacity, it raises the value to 0.0590 °C/kW-sec, and there is only a 
5 percent difference between the heat capacity derived by this method and the method using 
pulse and temperature data given in the main report. Furthermore, this value compares to the 
peak of the heat capacity from Figure 2,0.054 °C/kW-sec. 

120      240      360      480      600      720      840 

Time(sec) 

Figure 1. 8KW - no cooling - SS02-60. 
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Figure 2. Heat capacity. 

Changing the heat capacity does not alter the reactor period, pulse width, or temperature 
change, only the integrated power. That is why this parameter was used to calibrate the program 
to fit empirical data. Furthermore, since temperature changes are not affected by the heat 
capacity, the heat capacity used for temperature analysis is irrelevant. 
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APPENDIX D.   SAFETY BLOCK AND PULSE ROD TIMING 

Safety Block Drop Test June 2002 
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